DIE DEPROTONIERUNG VON 1-PHOSPHONATOENOLPHOSPHATEN

H. Ahlbrecht, B. König und H. Simon¹⁾

Fachbereich Chemie der Justus Liebig-Universität Giessen, Institut für Organische Chemie, Heinrich-Buff-Ring 58, D-6300 Giessen

(Received in Germany 23 January 1978; received in UK for publication 13 February 1978)

Das aus 2-Chlorpropionsäurechlorid $\frac{1}{2}$ leicht zugängliche Enolphosphat $\frac{2}{2}^{2}$ läßt sich mit tert. -Butyllithium glatt zu dem stabilisierten Allylanion $\frac{3}{2}$ deprotonieren. $\frac{3}{2}$ reagiert mit Methyliodid an C-1 zu $\frac{4}{2}^{3}$, mit Trimethylsilylchlorid dagegen an C-3 zu $\frac{5}{2}^{4}$.

Während $\underline{2}$ als $\underline{E} - \underline{Z}$ -Gemisch (Verhältnis $\sim 1:1$) eingesetzt wurde, fällt $\underline{5}$ sterisch einheitlich stets als \underline{E} -Isomer an. Die daraus abzuleitende Konfiguration für das heterosubstituierte Allylanion $\underline{3}$ entspricht den Erwartungen, nach denen ein Donorsubstituent die cis-, ein Akzeptorsubstituent die trans-Stellung bevorzugt ⁵).

Erneute Deprotonierung von $\frac{5}{2}$ ergibt das Allylanion $\frac{6}{2}$, das mit Aldehyden und Ketonen via Horner-Olefinierung die neuen funktionalisierten Butadiene $\frac{7}{2}$ a - f liefert (s. Tabelle).

Die Umsetzung ist regio- und stereoselektiv: Angriff an C-3 mit anschließender Peterson-Olefinierung ⁷⁾ wie bei den analogen deprotonierten 1-Phosphonatoenaminen ⁸⁾ wird nicht beobachtet und beide Doppelbindungen sind einheitlich konfiguriert ⁹⁾. Lediglich bei <u>7 f</u>

tritt bezüglich der Enolphosphat-Doppelbindung E-Z-Isomerie auf.

Die Regioselektivität ist allerdings stark von der Art des Elektrophils abhängig: bei der Umsetzung von $\underline{6}$ mit Methyliodid findet man ein Gemisch der Isomeren $\underline{8}$ und $\underline{9}$ im Verhältnis $\sim 1:1^{10}$, während mit Trimethylsilylchlorid nur $\underline{10}^{11}$ entsteht.

Die Umsetzungen wurden folgendermaßen durchgeführt: Zu einer gerührten Lösung von 20 mmol <u>2</u> oder <u>5</u> in 20 ccm trockenem THF wurden unter Argon bei -78[°] 22 mmol t-Butyllithium in Hexan getropft. Nach 4 h wird das jeweilige Elektrophil (22 mmol, Benzophenon in 10 ccm THF) zugetropft (Formaldehyd wird einkondensiert), nach 3 h auf Raumtemperatur gebracht und noch 1 h gerührt. Danach wird zweimal mit je 40 ccm Eiswasser und 100 ccm Toluol extrahiert, die organische Phase über MgSO₄ getrocknet und nach Entfernen des Toluols eine Kugelrohrdestillation durchgeführt.

Über die wegen der gleichzeitig vorhandenen Vinylsilan-¹²⁾ und Enolphosphat-¹³⁾ Funktion vielfältigen präparativen Möglichkeiten der neuen Butadiene <u>7</u> werden wir demnächst berichten.

Dem Fonds der Chemischen Industrie danken wir für Sachbeihilfen.

Literaturangaben und Bemerkungen

- 1) Diplomarbeit Universität Giessen, in Vorbereitung
- A.N. Pudovik, L.G. Biktimirova, <u>Zhur.Obsh.Khim.</u> <u>27</u>, 2104 (1957); <u>Chem.Abstr.</u>
 <u>52</u>, 6156 i (1958).
- 3) Ausbeute 20%. ¹H-NMR: **\delta** (CDCl₃) = 1.77 (d, J_{31PH} = 15 Hz, CH₃), 5.2 6.5 ppm (m, -CH=CH₂). ¹³C-NMR: **\delta** (CDCl₃) = 20.2 (s, CH₃), 81.9 (d/d, J_{31P13C} = 174.5/ 8.1 Hz, CH₃-C), 118 ppm (d, J_{31P13C} = 9.4 Hz, CH-C), 136 ppm (d, J_{31P13C} = 1.7 Hz, CH₂=CH-).
- 4) Ausbeute 67%. ¹H-NMR: **\delta** (CDCl₃) = 0.12 (s, Si(CH₃)₃), 1.89 (d/d/d, J_{HH} = 9.0 Hz, J_{31_{PH} = 2.2/2.2 Hz, CH₂-Si), 6.44 ppm (d/d/t, J_{31_{PH}} = 9.3/2.0 Hz, J_{HH} = 9.3 Hz, CH=C-P). ¹³C-NMR: **\delta** (CDCl₃) = -1.6 (s, Si(CH₃)₃), 18.5 (d, J_{31_P13_C} = 11.2 Hz, CH₂-Si), 134.8 (d/d, J_{31_P13_C} = 29.1/5.0 Hz, C=C-P), 136.4 ppm (d/d, J_{31_P13_C} = 230.8/9.5 Hz, C=C-P).}
- 5) R. Gompper, H.U. Wagner, Angew. Chem. 88, 389 (1976).
- 6) nicht optimierte Ausbeute an destillierter Substanz. Die C, H-Analysen und spektroskopischen Daten stimmen mit den angegebenen Strukturen überein.
- 7) T.H. Chan, Acc. Chem. Res. 10, 442 (1977).
- 8) H. Ahlbrecht, W. Farnung, in Vorbereitung.
- 9) Die Vinylsilandoppelbindung ist trans-konfiguriert (${}^{3}J_{HH} \sim 19$ Hz), die Konfiguration an der Enolphosphatdoppelbindung ist noch unbekannt.
- 10) Ausbeute 54%. ¹H-NMR: δ (CDCl₃) = 0.05 und 0.11(s, Si(CH₃)₃), 1.13 (d, J = 7.2 Hz, Si-C-CH₃), 1.84 ppm (d, J_{31PH} = 15.8 Hz). ¹³C-NMR: δ (CDCl₃) = -3.3 und -1.5 (s, Si(CH₃)₃), 14.1 (s, Si-C-CH₃), 20.4 (s, P-C-CH₃), 22.5 (d, J_{31P13C} =

10.5 Hz, -C-Si), 82.9 (d/d, $J_{31P}^{13}C = 171.5/8.5$ Hz, -C-P), 123.7 (d/d, $J_{31P}^{13}C = 233.3/10.0$ Hz,=C-P), 133.5 (d, $J_{31P}^{13}C = 8.7$ Hz,C=C-C-P), 140.1 (d/d, $J_{31P}^{13}C = 27.5/5.1$ Hz, C=C-P), 142.4 ppm (s, Si-C=C).

- 11) Ausbeute 64%. ¹H-NMR: δ (CDCl₃) = 0.13 (s, Si(CH₃)₃), 2.04 (d, J = 14.5 Hz, Si-CH-Si), 6.32 ppm (d/d/d, J_{HH} = 13.8 Hz, J_{31PH} = 9/1.3 Hz). ¹³C-NMR: δ (CDCl₃) = -0.21 (s, Si(CH₃)₃), 21.9 (d, J_{31P13C} = 9.1 Hz, Si-CH-Si),135.0 (d/d, J_{31P13C} = 230.3/10.0 Hz, C=C-P), 137.9 ppm (d/d, J_{31P13C} = 29.2/5.1 Hz, C=C-P).
- 12) J. Fleming, <u>Chem. Ind.</u> (London) <u>1975</u>, 449.
- 13) F.W. Lichtenthaler, <u>Chem. Rev.</u> <u>61</u>, 607 (1961).